domingo, 14 de marzo de 2010

CAOS TOTAL : LOS AGUJEROS NEGROS

















Algunos cientificos han planteado que el fin del mundo podria ser ocasionado por los famosos Agujeros Negros , razon por la cual vamos a ver una amplia exlicacion sobre este tema.

Físicamente, toda acumulación de masa genera un campo gravitatorio a su alrededor cuya potencia depende de la cantidad de masa y también del tamaño que tenga esa acumulación.

Por esta razón, por ejemplo, una nave espacial que debe escapar de nuestro planeta, necesita poseer suficiente energía para vencer la atracción gravitatoria terrestre. Si a la nave se le imprime una velocidad menor que la necesaria para que escape (11,2 km/seg) caerá a la Tierra, imposibilitada de salir.
Cuanto más masivo sea un astro (sea planeta o estrella) mayor será la velocidad de escape del mismo; debe tenerse presente entonces, que en objetos muy masivos (enanas blancas o estrellas de neutrones) la atracción gravitatoria es enorme.
La teoría indica que los objetos llamados agujeros negros se formarían cuando una cantidad apreciable de materia cósmica se acumula en un volumen extremadamente reducido del espacio; por ejemplo, luego del colapso de una estrella.
En un agujero negro, la fuerza de atracción que ejerce su gravedad es tan intensa que la materia se comprime hasta límites increíbles; al adquirir un estado tan denso, la gravedad resulta tan elevada que ni la luz puede escapar de él. Por esta causa el objeto no será observable: será "negro", a decir por los astrónomos. La denominación de "agujero" surge al designar al cuerpo del que no puede escapar nada a causa de su gravedad y que parece absorber toda la materia circundante.
Se ha calculado que las dimensiones de un agujero negro no superarían 1 km de diámetro, y que le correspondería una cantidad de masa entre una similar a la de la Tierra y masas equivalentes a varios miles de soles.
Los astrónomos han estimado que la materia atraída hacia un agujero negro será fuertemente acelerada por su gravedad y, por lo tanto, las partículas que la componen entrarán en un estado de continua colisión mutua, cayendo a muy grandes velocidades en una curva de forma espiral. Por consiguiente, en los alrededores de un agujero negro se creará un violento torbellino, en el cual la materia trata de penetrar en un muy pequeño volumen del espacio.
El continuo choque de partículas acaba calentándolas muy intensamente y dando lugar a una radiación muy fuerte de energía. Si la temperatura alcanza a ser suficientemente tan elevada como para alcanzar los millones de grados (lo cual es muy probable en esas circunstancias), se puede detectar ese torbellino mediante observaciones de la radiación en Rayos X.
Hasta el momento no existe ninguna prueba concluyente de la existencia de agujeros negros. Por ser invisibles, sólo podrían ser detectados a través de sus efectos gravitacionales sobre otros cuerpos celestes, o bien en el caso singular de que se halle junto a otra estrella formando un sitema doble.

Existe un sistema binario en la constelación del Cisne, donde se ha observado una potente fuente de Rayos X; aparentemente es de una de las dos componentes del sistema, justamente aquella que no es visible. Los datos recogidos de un sistema doble sugieren que un enigmático objeto (que sería muy pequeño), tendría masa suficientemente grande como para ser identificado como serio candidato a agujero negro.
Por otra parte se detectaron fuertes radiaciones de Rayos X en determinadas regiones del espacio; muchas de esas fuentes X son de carácter explosivo, lo que implicaría que podrían ser debidas también a agujeros negros. Algunos núcleos de galaxias además, son muy difíciles de identificar con algo conocido, por lo que algunos científicos consideran que podrían vincularse también con fenómenos similares a los agujeros negros.

FORMACIÓN DE UN AGUJERO NEGRO

Para entender la formación de un agujero negro, es importante entender el ciclo de formación de una estrella.

Una estrella se forma al concentrarse una gran cantidad de gas, principalemte hidrógeno, las cuales, por gravedad empiezan a colapsarse entre si.

Los átomos comienzan a chocar unos con otros, lo cual hace que el gas se caliente, tanto que luego de un tiempo las partículas de hidrógeno forman partículas de helio por fusión nuclear. Este calor hace que la estrella brille y que la presión del gas sea suficiente para equilibrar la gravedad y el gas deja de contraerse.

Las estrellas permanecerán estables de esta forma por un largo periodo de tiempo, y mientras mas combustible tenga la estrella, más rápido se consume, debido a que tiene que producir mas calor.
Subrahmanyan Chandrasekhar, calculó lo grande que podría llegar a ser una estrella que fuera capaz de soportar su propia gravedad, antes de que se acabe su combustible. Descubrió una masa (aproximadamente 1.5 veces la masa del Sol) en la que una estrella fría no podría soportar su gravedad. Esto es lo que se conoce como el límite de Chandrasekhar.

Si una estrella posee una masa menor a la del limite de Chandrasekhar, puede estabilizarse y convertirse en una enana blanca, con un radio de pocos kilómetros y una densidad de toneladas por cm3. Las estrellas de neutrones también estan dentro del límite de Chandrasekhar, siendo para estas 3 masas solares, y se mantienen por la repulsion de electrones.

 Su densidad es de millones de toneladas por cm3 , aquí se incluyen los púlsares, los cuales son estrellas de neutrones en rotación. En 1939, Robert Openheimer describió lo que le sucedería a una estrella si estuviera por fuera del límite de Chandrasekhar.
El campo gravitatorio de la estrella cambia los rayos de luz en el espacio - tiempo, ya que los rayos de luz se inclinan ligeramente hacia dentro de la superficie de la estrella. Cada vez se hace más difícil que la luz escape, y la luz se muestra más débil y roja para un observador. Cuando la estrella alcanza un radio crítico, el campo gravitatorio crece con una intensidad que la luz ya no puede escapar. Esta región es llamada hoy un agujero negro.
Si entendemos lo que significa la gravedad como 4ª dimensión y entendemos la curvatura del universo, un agujero negro sería un lugar en el cual la curvatura sería infinita.

Dentro del horizonte de eventos, el espacio está tan curvo que nada se puede escapar.
¿CÓMO PUEDE OBSERVARSE UN AGUJERO NEGRO?

Los agujeros negros tienen masa, la cual produce una fuerza gravitacional que afecta a objetos cercanos. La fuerza gravitacional debe ser muy intensa cerca de los agujeros negros, y podrían verse los efectos en su ambiente.

 El material que cae dentro del agujero negro, y sería aplastado y calentado al tratar de colarse en la pequeña garganta del agujero negro, por lo que produciría rayos-X. El primer ejemplo de un agujero negro fue descubierto precisamente por ese efecto gravitacional en una estrella acompañante, en 1971.
Cygnus X-1 es el nombre que se le dio a una fuente de rayos X en la constelación Cygnus, descubierta en 1962 con un primitivo telescopio de rayos X que se envió a bordo de un cohete. Para 1971, la localización de la fuente de rayos X en el cielo se había medido con mayor precisión, usando observaciones de cohete y satélite. Un avance fundamental se dio en marzo de 1971, cuando una nueva fuente de ondas de radio se descubrió en Cygnus, cerca de la posición de la fuente de rayos X.

 La señal de radio variaba exactamente al mismo tiempo que la intensidad de rayos X, una fuerte evidencia de que la fuente de radio y la de rayos X eran el mismo objeto. Una estrella débil llamada HDE 226868 aparece en la posición de esta fuente de radio.
Los astrónomos que estudiaban la luz de HDE 226868 habían encontrado dos hechos importantes: (1) HDE 226868 es una estrella supergigante azul -- una estrella normal, masiva, cerca del final de su vida; y (2) la estrella gira alrededor de otro objeto masivo en una órbita con período de 5.6 días. Conociendo la fuerza necesaria para mantener a HDE 226868 en órbita, se puede calcular la masa de la compañera, la cual es es de cerca de 10 masas solares.

Pero no hay signos de luz visible de ella y algo en el objeto produce rayos X.
La explicación o "modelo" que mejor se ajusta a estos hechos es que la compañera es un agujero negro de cerca de 10 masas solares, el cadáver de una estrella masiva que alguna vez fue la compañera de HDE 226868.

Los rayos X son producidos conforme el gas de la atmósfera de la supergigante azul cae hacia el objeto colapsado y se calienta. El objeto colapsado no puede ser una enana blanca o una estrella de neutrones, porque estos objetos no pueden tener masas mayores de 1.44 y 3 masas solares, respectivamente. Nunca podremos "probar" esta teoria de Cygnus X-1 "viendo" el agujero negro, pero la evidencia circunstancial es fuerte. Otros tres objetos: LMC X-3 en la Nube Mayor de Magallanes, y A0620-00 y V404 Cygni en nuestra galaxia, tambien se cree que tienen agujeros negros como una de sus componentes.
A pesar de la dificultad al descubrir los agujeros negros, se estima con certeza que muchas estrellas a través del tiempo en el universo han perdido toda su energía y han tenido que colapsarse. Tal vez el número de agujeros negros es más grande que el número de estrellas visibles.
El horizonte de eventos esta formado por los caminos en el espacio -tiempo de los rayos de luz que no alcanzan a escapar. Los rayos de luz que están en esta frontera se moverán eternamente, sin embargo no podrían chocar entre sí por que los dos rayos de luz serían absorbidos por el agujero, así los "caminos luminosos" se mueven en forma paralela, al nunca acercarse entre sí, el horizonte permanece constante o va aumentando con el tiempo. Al caer materia dentro del agujero negro el área del horizonte de eventos aumenta.
EVIDENCIA

Diferentes equipos de astrónomos han anunciado haber encontrado evidencias que permiten casi, prácticamente, asegurar la existencia de los agujeros negros en el universo. Junto a las detecciones de rayos X y gamma, se ha sumado el monitoreo que ha efectuado el Hubble Space Telescope (HST), con los nuevos instrumentos instalados en él sobre 27 galaxias cercanas, en las cuales, en algunas de ellas, se han podido detectar rastros de la desaparición de un sinnúmero de estrellas y otras que están siguiendo el mismo destino, como si fueran engullidas por un poderoso motor termonuclear.
También, se ha podido comprobar en el espacio la existencia muy precisa de un disco de acreción de un diámetro de un quinto de año luz --prueba sólida de la existencia de un agujero negro-- ubicado en la galaxia 3C390.3, situada a 1.000 millones de años luz de la Tierra. El satélite IUE de exploración ultravioleta de la Agencia Europea del Espacio fue el que hizo el hallazgo y además pudo medirlo.

 En nuestra galaxia, La Vía Láctea, desde el año 1990 sabemos de evidencias de contar con un cohabitante agujero negro, ubicado a unos 300 años luz desde la Tierra; lo detectó el telescopio Sigma y por su magnitud se le llamó "el gran aniquilador".

 Recientemente se han descubierto pruebas concluyentes de la existencia de un inmenso agujero negro en el centro de la galaxia elíptica gigante M87, que se encuentra a unos 57 millones de años luz de la Tierra en la constelación de Virgo. Se estima que este agujero negro tiene una masa equivalente a la de 3.000 millones de soles, compactada en un espacio de unas 11 horas-luz de diámetro.
Pero mayores evidencias sobre posibles agujeros negros siguen apareciendo. Una de las más relevantes registrada recientemente es la encontrada en la galaxia activa NGC 6251, ubicada a 300 millones de años luz desde la Tierra en la constelación de Virgo. Una sorprendente visión reportada por el Telescopio Espacial Hubble de un disco o anillo de polvo, urdido por efectos gravitatorios, que se trasluce a través de la emisión de un chorro de luz ultravioleta que estaría emanando desde un posible agujero negro.
Se trata de un fenómeno nuevo para los investigadores observadores del cosmos. Anteriormente, todo lo que se había podido detectar como evidencia de la existencia de un agujero negro era la detección de los efectos gravitatorios que éste genera en los objetos que van siendo atraídos a traspasar el horizonte de eventos, formando en ello una especie de disco de circunvalación constituido como una “dona” que conforma un capullo que rodea a algo gravitatoriamente poderoso, pero que de ello solamente era factible distinguir la luz intensiva que emana desde los gases calientes que ya se encuentran atrapados por la gravedad del agujero negro, el cual se hallaría empotrado en medio de la “dona”.

Pero lo que encontró el Hubble, es bastante más de lo que anteriormente habíamos podido ver sobre un agujero negro. En esta ocasión, se ha podido observar como ese agujero ilumina el disco de circunvalación que lo rodea, cuestión esta última, no muy extraña para una gran mayoría de físicos teóricos. En las tomas del Hubble se puede distinguir luz ultravioleta reflejándose sobre un lado del disco, el cual se encontraría urdido como la parte superior de un sombrero.
Tal urdidura podría ser producto de perturbaciones gravitacionales que se estuvieran generando en el núcleo de la galaxia que almacena el disco, o bien, al pressing que genera el eje de rotación del agujero negro sobre el de la galaxia.
Si bien todavía no se conocen las posibles medidas de este agujero negro, las evidencias de su existencia se encuentra en la poderosa emisión que se detecta en la eyección de radiaciones que alcanza un espacio de tres millones de años luz y de las partículas que se han visto emanar desde la ubicación del agujero negro en el eje mismo de esta galaxia activa elíptica. Se piensa que muchas galaxias denominadas activas son la cuna de una apreciable cantidad de agujeros negros.

No hay comentarios:

Publicar un comentario